Department of Information Engineering, Computer Science and Mathematics A
University of LAquila, Italy /

Exploiting Architecture/Runtime Model-driven
Traceability for Performance Improvement

Vittorio Cortellessa, Daniele DI Pompeo,
Romina Eramo, Michele Tuccl

{name.surname}@univaq.it

Introduction

m Software architectures are growing in complexity and heterogeneity

m Model-Driven Engineering (MDE) has shown to be effective in managing complexity by introducing
automation at a higher level of abstraction

m Vision: exploiting design-runtime relationships to detect software problems and deduce
improvement actions (e.g., to meet new (non-)functional requirements)

m A major challenge is to achieve an efficient integration between design and runtime aspects of
systems

m MDE techniques can support the development of complex systems by managing relationships
between a running system and its architectural models

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Overview of the approach

N\
Design
Models

Performance analysis

Architectural refactoring

T\
Log
Models

TRACEABILITY
LINKS
GENERATION

JTL

The process underlying the approach:

Traceability
Links

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

PERFORMANCE
INDICES
ANNOTATION

Annotated
Design
Models

PERFORMANCE
ANTIPATTERNS
DETECTION

- Refactoring

A Model-driven approach that exploits design/runtime interactions to support designers in :

Suggested

Actions

INFQ 2019 - June 10-11

JTL: Janus Transformation Language

Eclipse EMF-based model transformation tool tailored to support bidirectionality and
change propagation and to keep traceability during software design.

m Generation of traceability links between heterogeneous =
software/runtime models EHI"!E

m Storage of links in an explicit way by means of
traceability models Er_:‘

m Propagation of feedback obtained from the tracing jtLunivaq.it
analysis back to the software models

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

PADRE: Performance Antipatterns Detection and model REfactoring

Eclipse-based framework that enables performance antipatterns detection on UML-MARTE
software models and model refactoring based on detection results.

m A performance antipattern describes those bad practices
In software designing that might introduce performance
degradation into the system.

[5]::

git.io/SeaLabAQ-padre

m User-driven refactoring of UML-MARTE software design
models, driven by performance antipatterns detection

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

The E-Shopper case study

m Open source e-commerce web application
based on microservices

m 9 application microservices, 8 databases,
4 infrastructure microservices, 42 APl endpoints

m Designed in UML
(Component, Deployment and Sequence Diagrams)

Available at:
git.io/fh9z8

m Developed using the Spring Cloud framework
m Deployed on Docker

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

UML design: excerpt of the home page scenario
The E-Shopper case study 7

The approach requires three different design views

Static view: COMPONENT DIAGRAM

i 'od . .
= | Web-Service = = |ltems-Server | = | Items-DB .
> @ f--o_ @] Dynamic view: SEQUENCE DIAGRAM
P ioer 2 categoryServer productServer : i .
=3 = | categories-Server = | categories-DB ekl 7w sevea 7 Gaewar 1 i ot B P 7 tem semer 1
get @ """" i i i i i i
| | | |
= getCategory : & rom 3 | | : :
@ [= | Products-Server] ------)‘ = | Product-DB] i ! ! I I
\\ findProduct { : g § :
| |
: 8 getifindal) ! @ fnani) : : :
. | | |
Deployment view: DEPLOYMENT DIAGRAM ! s J__L....‘.‘.‘l‘".".‘li’."‘.y L] | |
{5 <<deploy>> : 8 sttingProduct L broduc : :
@ Container-Web-Service ‘ [mmmmm e { Web-Service] } gty }
PR ..o S
get(finditemsRandomByldProdu !
: 8 IdProduct) : i !
I) depl ! ! 8 finditemsRandomByldProduct())
. g <<deploy>> ! L
[£] Container-Gateway ‘ jeEe s sRe St S S touaTa s Gateway : . i L AR RRERIRETERRAE M
L I I [} 1
I] ! !' el e) L ‘ s finditemRandom() ! |
2 <t <<deploy>> ! - ;
@ Container-Products-Server < i Dt Products-Server l [— eogeeny | eeeeeeeeceeees e u
] ! 8 get(finFeaturesitemRandom) | ! !
"’E' <<deploy>> : Lo 8, findreaturesitemRandom() | 1
@ Container-Categories-Server ‘ [Eemesmmacaas -{ Categories-Server] | - getreply L N
: 4--home_reply [Grmmmmmm T nmmanenes i :
= deploy>> e ——
: R
@ Container-ltems-Server ‘ e Items-Server

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Overall approach

8
UML RIGHT LEFT Traceability UML+MARTE
Metamodel Metamodel Metamodel
A A A
1 1 1 1
1 1 T I
1 1 1 1
1 1 () 1 1 4
1C2 1C2 JTL 1 C2 1 C2 PADRE
1 1 1 1
1 1 1 1
1 1 ~N 1 1 Performance
X ' Traceability Model ' T Antipattcern <]
Lo 1 IN Design-Runtime ouT 1 IN detection
M dg | : correspondences :
eeE . Log umL . out
1 —J Model |=—=— Model |) Suggested
1 1 Refactoring
i EXECUTE N ! Mode Actions
ouT 1 1 refactoring
' h IN ' N~
: Traceability links :
Runtime ! engine e TR L (\ | |mPLEmENTED
infor'mvation B umL IN) indices ouT UML+MARTE Performa.nce
mining Model annotator Model analysis
~—
_ J _ J L
IN LY T 1)
| 1
. SYSTEM |
| REFACTORING |
MONITORING | S |
Monitoring ouTt INFRASTRUCTURE | MONITORED P APPLIED TO T
data l J‘ SYSTN]‘ <

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Runtime information mining

9
UML RIGHT LEFT Traceability UML+MARTE
Metamodel Metamodel Metamodel
A A A
1 1 1 1
I 1 é A
1 1
1 1
1C2 1C2 . PADRE
: : Runtime data (logs/traces) are gathered from a
: : : e erformance
| . monitori ng infrastructure over a running system B .
: : detection
Log i
Model ! Log uML i
i Model Model i) ||°9VT RSUfggttestfed
1 1 Model efactoring
or : EXECUTE : refactoring Actions
0 . —
1
1 1
Runtime : : () IMPLEMENTED
information X umL IN UML+MARTE Performa.nce |
mining Model > Model analysis
—
J ==L
IN
— —— I | I I S IS I S IS B S B BN Baa GBS O mal B B B B e B Sl B BN B BT e SYSTEM
o -1 | REFACTORING
| MONITORING e e
| Monitoring ouT INFRASTRUCTURE | MONITORED APPLIED TO T
data

l

|

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

| R —_

INFQ 2019 - June 10-11

Distributed tracing

Monitoring infrastructure 10

Method used to profile and monitor applications,
especially those built using a microservices architecture

INSTRUMENTATION COLLECTOR PERSISTENT
API STORAGE

y
-
-

Z1IPKIN elasticsearch

Spring Cloud Sleuth

RAW LOG

November 20th 2018, 10:52:48.107 traceld: 149c4cef3ac7f19f duration: 27,000 shared: true localEndpoint.serviceName: gateway localEndpoint.ipv4: 172.28.0.12 localEndpoint.port: 4000 ti
mestamp_millis: November 20th 2018, 10:52:48.107 kind: SERVER name: http:/categories/category id: 16bb4e7b689f807a parentId: 149c4cef3ac7f19f timestamp:
1,542,707,568,107,000 tags.spring.instance_id: 002ffdb287d6:gateway:4000 _id: cE-JMGcBBzL8qQlHYHn4 _type: span _index: zipkin:span-2018-11-20 _score:

Time _source

November 20th 2018, 10:52:48.115 traceld: 149c4cef3ac7f19f duration: 17,000 shared: true localEndpoint.serviceName: categories-server localEndpoint.ipv4: 172.28.0.18 localEndpoint.port
: 5555 timestamp_millis: November 20th 2018, 10:52:48.115 kind: SERVER name: http:/categories/category id: 4ad2da86e8767b82 parentId: 16bb4e7b689f807a
timestamp: 1,542,707,568,115,000 tags.mvc.controller.class: CategoriesController tags.mvc.controller.method: getCategory tags.spring.instance id: S5hS58aea6

835e:categories-server:5555 _id: bk-JMGcBBzL8qQlHYHn2 _type: span _index: zipkin:span-2018-11-20 _score: -

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Runtime information mining

Logs are automatically
transformed into Log Models
conforming to a Log Metamodel

Runtime
information

mining

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

[] Log

[I name: EString

[1..1] log
[1.X] traces

[[Trace

l ? ID : EString

[1.5] spans I[1..1] traceld

E Span

? ID : EString

l? timestamp : EString
? duration : EFloat = 0.0
3 kind : Kind = NULL

== CLIENT
= SERVER

E Service

? name : EString

[1..1] service

[1.*] service

[1.*] endpoints

E EndPoint

[1..1] endpoint

[0..1] parentid

? name : EString

INFQ 2019 - June 10-1

From raw logs to models

Runtime information mining

A Java transformation automatically generates
Log Models (serialized in XMI) from raw logs

RAW LOG

12

mestamp_millis: |November 20th 2018, 10:52:48.107 | kind: |SERVER |name: http:/categories/categary id: |16bb4e7b689f807a | parentId:

traceld: 149cdcef3ac7f19f| duration: 27,000 shared: true localEndpoint.serviceName: | gateway | localEndpoint.ipv4: 172.28.0.12 localEndpoint.port: 4000 ti

1,542,707,568,107,000, tags.spring.instance_id: 002ffdb287d6:gateway:4000 _id: cE-JMGcBBzL8qQli{YHn4 _type: span _index: zipkin:span-2018-11-20 _score:

149c4cef3ac7f19f timestamp:

LOG MODEL
pop400_ru5 : kog 16bb4e7b689f807a : Span 1
N duration: 27000 gateway :
/| kind: SERVER Service
| timestamp: 18/11/20,09:52:48..
\
149c4cef3ac7f19f :
Trace 4ad2da86e8767b82 : Span
\ duration: 24000 http:/categories/category :
: EndPoint
kind: CLIENT dalial
timestamp: 18/11/20,09:52:48..

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

INFQ 2019 - June 10-1

Design-Runtime traceability with JTL

rr o — P~ - - - -~ 1 13
| | |
I UML RIGHT LEFT I Traceability | UML+MARTE
Metamodel Metamodel Metamodel
| i | x | 7
! i : i i -4 i
| : : aY | i | 1
1C2 1C2 JTL 1 C2 1 C2 PADRE
| 1 1 | 1 | 1
| E E ~N : | E PerfF)rmance
N i Traceability Model] 1 Ant|pattcern <
I 1 Design-Runtime 'OUT I 1 IN detection
Log . IN 0
| Model : correspondences 1 - oML | :
del |—e— | |OUT | Suggested
, : - —— Mode ~J Model || | : Model Refactoring
| ouT : I_e EXECUTE I : refactoring Actions
) N — 1 : | -) == === [; \) |
: Traceability links : a N
Runtime engine . .
information | Design-Runtime correspondences are defined as
e] bidirectional model transformations at metamodel
IN | level :
' —————Ne—_iC__m___ee— 1
. . I
- [iCheLI The JTL Traceability engine generates traceability 4
Monitoring out INFRASTRUCTURE .
data links between UML and Log Models
| Ea |)

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

~ >

INFQ 2019 - June 10-1

Traceability model between the Log and UML models
Design-Runtime traceability with JTL 14

| (&) eshop.uml 52 I

v 2 platform:/resource/ICSA2019/src/main/reso

4 pop400_ruS.xmi 53

A x| platform:/resource/ICSA2019/src/main/re:

< Span 848f713a3fc3al08 » < Trace Link Span2Message_4ad2da86e8767b82 ¥ < Use Case Get HomePage
< Span 7:z66cec887960b84 » < Trace Link Span2Message_18c3f41109¢8c6fd ¥ <4 Interaction dyamicView
<4 End Point http:/categories/category # » < Trace Link Span2Message_da754b973330e82d <4 Message home
<4 Message home_reply
A

<4 Message get

¥ 4 Log pop400_ru5 ¥ 4 Trace Mode pop400_ru5 ¥ < Model modelling

v < Trace 149c4cef3ac7f19f ¥ < Trace Link Trace2UseCase_149c4cef3ac7f19f ¥ < Package staticView
< Span 16bb4e7b689f8(%\- \ <> Trace Link End UseCzse ¥ < Component Api-Gateway
4 Span 4:d2da86e8767b82 ;\" RY <> Trace Link End Trace » <4 Operation get

¥ < Trace 1b013fa75420bf54 < AL < Trace Link Trace2UseCase_1b013fa75420bf54 - ¥ < Component Categories-Server
4 Span 18c3f41109c8c6fd » < Trace Link Trace2UseCase_cb9b9ab5d908bfl <4 Operation getCategory
< Span dz754b973390e82d + ¥ < Trace Link Span2Message_16bb4e7b683f807a <4 Operation findAll

¥ <4 Trace cb9b9ab5d908bfl18 « <> Trace Link End Message ¥ < Package dynamicview
4 Span 6850d3b3195db041 4 < Trace Link End Span N » < Actor User

>

v ar .

<4 End Point find-all < » < Trace Link Span2Message_6850d3b3195db041:
4 Service gateway 4 » < Trace Link Span2Message_848f713a3fc3al08

Eclipse-EMF tree view in JTL

4 Service categories-server #———— » < Trace Link Span2Message_7a66cec887960b84 <4 Message get_reply
~ ¥ < Trace Link Endpoint2Signature_http:/categories/category <4 Message getCategory
< Trace Link End Operation <4 Message getCategory_reply
< Trace Link End EndPoint | <4 Message findAll
» < Trace Link Endpoint2Signature_find-all <4 Message get
Property Value <> Trace Link Service2Component_gateway Property Value
< Trace Link End Component
Name I=Trace Name = UscCese

- <> Trace Link End Service —=
= =
Trace Element [=Trace 149c4cef3ac7f19f b 4 Trace Link Service2Component categories-server | Trace Element [=Use Case Get HomePage

Type =Trace Type = UseCzse

| J 1 J 1 J
Log Model Traceability Model UML Model

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Log2UML correspondences specification

Design-Runtime traceability with JTL 15

Exp

transformation Log2UML (log:Log, uml:UML) {

top relation Trace2UseCase {
checkonly domain log t : Log::Trace {
spans = s : Log::Span { }
bi
checkonly domain uml uc : UML::UseCase {
ownedBehavior = ob : UML::Interaction {
message = m : UML::Message { }
}
bi
where { Span2Message (s, m); }
}
relation SpanZMessage {
checkonly domain log s : Log::Span {
endpoint = ep : Log::EndPoint { }
bi
checkonly domain uml m : UML::Message {
signature = s : UML::Operation { }
bi
where { EndPoint2Signature(ep, s); }
}
relation EndPoint2Signature {
n : String;
checkonly domain log ep : Log::EndPoint {
name = n
bi
checkonly domain uml s : UML::Operation ({
name = n
Hi
}
top relation ServiceZ2Component {
n : String;
checkonly domain log s : Log::Service ({
name = n
bi
checkonly domain uml c : UML::Component {
name = n
bi
}

N

Map a Trace element in the Log domain to a UseCase element in the UML
domain. The where clause invokes the execution of the Span2Message
relation

Map a Log Span to a UML Message inside an Interaction. The where clause
invokes the execution of the EndPoint2Signature relation

A JTL transformation defined between Log and UML

Map a Log EndPoint of a Span to a UML Operation by matching names. The
UML Operation must be referenced in the signature of the Message

Map a Log Service to a UML Component by matching names

raceability for Performance Improvement INFQ 2019 - June 10-11

Performance analysis and refactoring with PADRE

6 PADRE detects performance antipatterns on the
UML+MARTE Model

PADRE suggests the most promising refactoring

e actions that shall remove detected antipatterns and
Improve system performance

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

PADRE

Performance
Antipattern

detection

Y
()

Model
refactoring

—

Y

Performance

analysis
-~

IMPLEMENTED

INFQ 2019 - June 10-1

Promising refactoring actions - Running Example (1/2)

Performance analysis and refactoring with PADRE 17

Validation % A |

/%, OLB <Node> WebServer
¢ PaF <Operation> getHome

» & PaF <Operation> findProduct

@ Move it to a new Component deployed to a new Node 1
Move it to a new Component deployed to the less used neighbour Node

m PADRE suggests to resolve the Pipe and Filter (PaF) performance antipattern on the Items Server
microservice by applying the Move operation refactoring action

m The most demanding operation findProduct() of Product Server is moved to a new microservice
(Items Server 2)

m The new Items Server 2 microservice is deployed on a new node (the Items Server 2 Docker
container)

m After the refactoring, the response time of the Web scenario has been improved by 13.34%,
whereas the response time of the Warehouse scenario has been improved by 5.04%

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Recap

18

m We introduced an approach to support the identification and solution of performance problems
on a running system

m Monitoring information has been linked to design models by means of the JTL traceability engine
m Traceability links have been exploited to annotate performance indices on design models

m PADRE has been used to detect performance antipatterns and provide promising refactoring
actions

m The approach has been applied on a case study that was developed and monitored using
industrial standard technologies

Continue... —
Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Work in progress area

Runtime information mining (ongoing)

Runtime data (logs/traces) are gathered from a
monitoring infrastructure over a running system

We exploit elastic beats in order to:
e Measure the real hw utilization (CPU,
Network..) for each container
e Calculate reliability of the system (by counting
tomcat’s error rate)
L
We have also conceived and implemented REST APIs
in order to interact with the DB (elasticsearch)

MONITORING 1
INFRASTRUCTURE

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Docker Stats - Metricbeat

21
y CPU Usage [Metricbeat System] I Disk Usage [Metricbeat System]
‘ kibana
> @ user 42.6% I ' 0%
@ Discover ® system 27.2% I 0%
¢ 0%
f Vinciken ot * N '
e irg 0%
Dashboard ® softirq 0% I
S ® iowait 0%
Einc I Disk used [Metricbeat System]
Dev Tools I
Management I
1 ‘
0%
I 0
_Men:y U:ge [M_em(;t S;m]_ _________ Yy N
> @ Used 0B
® Cache 0B
~ | We gather container’s CPU
utilization, and we exploit it to fill
back the model and discover
performance flaws
& Collapse 7 \ Y

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Docker Stats - Metricbeat

22
y a4 N Disk Usage [Metricbeat System]
‘ kibana
m 0%
@ Discover 0%
0%

1 Visualize Thanks to D|Sk and Memory :

Dashboard metHCS' we can dISCOVQr
Timelon performance issues caused by
DevTols disk and memory bottlenecks

Management

Disk used [Metricbeat System]

R RN UEUR R . T . e T e e e e e e e e .
Memory Usage [Metricbeat System] I Network Traffic (Packets) [Metricbeat System]
> @ Used 0B I > @ Inbound 4.9/s
S N ’ -
® Cache 08 I ® Outbound -5.4/s

® Free 0B

I Network Traffic (Bytes) [Metricbeat System]

> @ Inbound 1.771KB/s

@ Outbound -788.7B/s

EES=t:
I

(S Collapse

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Docker Stats - Metricbeat

CPU Usage [Metricbeat System] Disk Usage [Metricbeat System]

‘ ({ERE! d N

23

'l 0%

@ Discover 0%
r 0%

Visualize 1 — 0%

Dashboard We can identify and manage
Timelion network bottleneck, by analysing
Dev Tools network traffic.

Management

Disk used [Metricbeat System]

0%

A y - e o e e T e O e e T e O . .
Memory Usage [Metricbeat System] I Network Traffic (Packets) [Metricbeat System] I
> @ Used 08 “ Y > e Inbound 4.9/
SOV —
® Cache 0B I ® Outbound -5.4/s I
@ Free 0B I . oo

per1 e 1 I
I Network Traffic (Bytes) [Metricbeat System] I
> @ Inbound 1.771KB/s I

I » @ Outbound -788.7B/s
l * |

A E

| —_— Ju‘— ez bl |
| 1D o |

(S Collapse

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Docker Stats - Packetbeat

24
g | Packet beat plugin helps us
to obtain data on exchanged
S s g
’ g § 7 ¥ 7 packets
http Response Times] tls Response Times o]

We can measure the average
response time for different

scenarios and different
) - . workloads

responsetime: Descending responsetime: Descending Vve Ca n a l'SO m eas u rel fO r
: * example, the error rate

http Statuses] tls Statuses @

N-
oK

Error

Count
Count

€ @ Count

Count
Count

5
£
&
status: Descending status: Descending

a

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Docker Stats - Filebeat

Tomcat Logs S

25

© @Count

stdout

stderr

event.stream: Descending

Count

Filebeat plugin helps us to analyse tomcat’s log errors, and thus measuring, for example, the
reliability/availability of the system

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

System Refactoring (ongoing)

RIGHT

Log UML
Metamodel Metamodel
A

1
[abo]

A
1

~

ITI

LEFT

Traceability UML+MARTE
Metamodel Metamodel
A

falo]

C2

4 N
e A Java Library has been conceived and implemented
(a part of) to “automatically” apply suggested

refactoring actions to the source code.
At the current version, we can generate
e replicas of a microservices
e improve/reduce HW capability of a docker
container out
e Modify route in order to control network traffic
\ V.
MONITORING
Monitoring ouT INFRASTRUCTURE MONITORED

data

e

<

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement

PADRE

Performance
Antipattern
detection

APPLIED TO

ouT

26

Suggested
Refactoring
Actions

IMPLEMENTED

SYSTEM
REFACTORING

INFQ 2019 - June 10-11

System Refactoring - Clone, Remove, Update a container

public String cloneContainer(String containerId) {

CLONE Container

ContainerInfo containerInfo docker. inspectContainer(containerld);

final ContainerConfig config = ContainerConfig.builder()
.image(containerInfo.image()).build();

final String name = "alt_" + containerInfo.name().substring(1);

al ContainerCreation creatio er.createContainer(config, name); REMOVE Contamer
final String newID = creati
r.startContainer(newlID);

public void removeContainer(String containerlId) {

return newID; try {

.println("List of running containers:");
List<Container> containers = docker.listContainers();
.stopContainer(containerId, 10);

UPDATE Container docker.removeContainer(containerId);

public void updateContainer(String containerID, long memory, String cpuSetCpus, long cpuShares) {
final HostConfig newHostConfig = HostCon .builder()
.memory (memory) .cpusetCpus(cpuSetCpus)
. cpuShares (cpuShares) .build();

Exploiting Architecture/Runtime Model-driven Traceability for Performance Improvement INFQ 2019 - June 10-11

Department of Information Engineering, Computer Science and Mathematics A
University of LAquila, Italy /

Exploiting Architecture/Runtime Model-driven
Traceability for Performance Improvement

Vittorio Cortellessa, Daniele DI Pompeo,
Romina Eramo, Michele Tuccl

{name.surname}@univaq.it

